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Abstract—In this paper, we present a method for extracting consistent foreground regions when multiple views of a scene are

available. We propose a framework that automatically identifies such regions in images under the assumption that, in each image,

background and foreground regions present different color properties. To achieve this task, monocular color information is not

sufficient and we exploit the spatial consistency constraint that several image projections of the same space region must satisfy.

Combining the monocular color consistency constraint with multiview spatial constraints allows us to automatically and simultaneously

segment the foreground and background regions in multiview images. In contrast to standard background subtraction methods, the

proposed approach does not require a priori knowledge of the background nor user interaction. Experimental results under realistic

scenarios demonstrate the effectiveness of the method for multiple camera set ups.

Index Terms—Background region, foreground region, multiview silhouette consistency, silhouette segmentation.

Ç

1 INTRODUCTION

IDENTIFYING foreground regions in single or multiple
images is a preliminary step required in many computer

vision applications such as object tracking, motion capture,
image and video synthesis, and image-based 3D modeling.
In particular, several 3D modeling applications rely on
initial models obtained using silhouettes extracted as
foreground image regions, e.g., [1], [2], [3]. Traditionally,
foreground regions are segmented under the assumption
that the background in each image is static and known
beforehand, and this operation is usually performed on an
individual basis, even when multiple images of the same
scene are considered. In this paper, we present a method
that extracts consistent foreground regions from multiview
images without a priori knowledge of the background. The
interest arises in several applications where multiview
images are considered and where information on the
background is not reliable or not available.

The approach described in this paper relies on two
assumptions that are often satisfied: 1) The region of interest
appears entirely in all images and 2) background colors are
consistent in each image, i.e., background colors are
different from foreground colors and they are also homo-
geneous over background pixels. Under these assumptions,
we iteratively segment each image such that each back-
ground region satisfies color consistency constraints and all
foreground regions correspond to the same space region. To
initiate this iterative process, we exploit the first assumption
to identify regions in the images that necessarily belong to

background. Such regions are simply image regions that are
outside the projections of the observation volume common
to all considered viewpoints. These initial regions are then
grown iteratively by estimating each pixel’s occupancy
based on its color and spatial consistencies. This operation
can be seen as an estimation of foreground and background
parameters given image information with latent variables
denoting the region a pixel belongs to, background or
foreground. For this task, we adopt an iterative scheme
where the background and foreground models are updated
in one step and the images are segmented in a subsequent
step using the new model parameters. Important features of
the approach are as follows: 1) Our method is fully
automatic and does not require a priori knowledge of any
type nor user interaction, and 2) images can come either
from a single camera at different locations or from multiple
cameras. In the latter case, cameras do not need to be color-
calibrated since color consistency is not enforced among
different viewpoints. The overall procedure of the proposed
silhouette segmentation method is outlined in Fig. 1.

The remainder of the paper is as follows: In Section 2, we
review existing segmentation methods. Section 3 presents
the probabilistic framework within which we model the
problem. Section 4 details the iterative scheme that is
implemented to identify silhouettes. Quantitative and
qualitative evaluations are presented in Section 5 before
concluding in Section 6.

2 RELATED WORKS

Typical background subtraction methods assume that
background pixel values are constant over time, whereas
foreground pixel values can vary. Based on this fact, several
approaches that take into account photometric information
such as gray scale, color, texture, or image gradient have
been proposed in a monocular context. Chroma-keying
approaches belong to this category and assume a uniform
background, usually blue or green. For nonuniform back-
grounds, statistical models are precomputed for pixels and
the foreground pixels are then identified by comparing
current values with model values. Several statistical models
have been proposed for that purpose; for instance, normal
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distributions are used in conjunction with the Mahalanobis
distance [4] or a mixture of Gaussian models is considered
to account for multivalue pixels located on image edges or
belonging to shadow regions [5], [6], [7]. Such models can
also evolve with time to manage varying background
characteristics [4], [8], [9]. These background subtraction
methods have been widely used in the area of real-time
segmentation, although they require a learning step to
obtain knowledge of the background color distribution.

In addition to these models, graph cut methods have also
been widely used to enforce smoothness constraints over
image regions. After the seminal work of Boykov and Jolly
[10], many approaches have followed that direction. For
example, GrabCut [11] takes advantage of iterative optimiza-
tion to reduce the user interaction required to achieve good
segmentation. Li et al. proposed a coarse-to-fine approach in
Lazy Snapping [12] that provides a user interface for
boundary editing. Shape prior information is considered in
[13], [14] to reduce segmentation errors in areas where both
the foreground and background have similar intensities.
Background cut [15] also reduces segmentation errors due to
background clutter by exploiting color gradient information.
Recently, graph cut-based approaches have also been
proposed for object segmentation in videos [16], [17].
Algorithms have been proposed to reduce the amount of
user interactions by using only a few seed pixels to estimate
object boundaries [18], [19]. These methods have demon-
strated their abilities to extract foreground objects both in
static images and video sequences. However, they usually
require user interaction that can be significant according to
the complexity of the images being processed and the
expected quality of the results.

The aforementioned approaches assume a monocular
context and do not consider multicamera cues, even when
available. However, foreground regions in several images of
the same scene should correspond to the same 3D space
region. In other words, foreground regions over different
viewpoints should exhibit spatial coherence in the form of a

common 3D space region. Early attempts in that direction
were made in [20], [21], where depth information obtained
from stereo images is combined to photometric information
to segment foreground and background regions. Recently,
Kolmogorov et al. in [22] also proposed a real-time
segmentation method that preserves the foreground object
boundaries, under background changes, by combining
stereo and color information. Incorporating depth informa-
tion clearly improves over monocular cues when segment-
ing foreground objects. Nevertheless, such approaches are
designed for stereoimaging systems and do not easily
extend to multicamera systems with more than two cameras.

For more than two view configurations, spatial coher-
ence is advantageously considered through a spatial region
instead of locally through pixel depths. Again, consistent
foreground image regions give rise to a single 3D space
region. Conversely, this region should project entirely on
foreground regions in image domains; otherwise, it would
mean that there are space regions that correspond to
foreground with respect to some viewpoints and back-
ground with others. A few approaches exploit such a fact
through various scenarios. Zeng and Quan [23] proposed a
method that propagates color consistency between view-
points by iteratively carving the visual hull with respect to
color consistency in each image. This approach increases
spatial consistency from one to another viewpoint; how-
ever, it only approximates spatial coherence, which should
be enforced over all viewpoints simultaneously.

In another work, Sormann et al. [24] applied a graph cut
method to the multiview segmentation problem. Spatial
coherence is enforced over different viewpoints by minimiz-
ing differences between silhouette regions in two images at
successive iterations. Such a shape prior is combined to color
information to segment shape silhouettes in multiple views.
While improving over monocular approaches, this scheme
relies on a strong assumption, i.e., silhouette similarities
between two neighboring views, that is hardly satisfied even
with small camera motion between two images. Bray et al.
made use of shape priors to solve for both segmentation and
model poses simultaneously under the assumption of a
known shape model, e.g., an articulated model [25].

For unknown shapes, Campbell et al. [26] recently
proposed a 3D object segmentation approach with objec-
tives similar to ours. They exploit both color and silhouette
coherence and solve for the optimal 3D segmentation using
a volumetric graph cut method. However, the object of
interest is assumed to be at the center of all images and the
segmentation is achieved in an intermediate voxel grid,
while we focus on the original image pixels. Another
interesting direction is the occupancy grids [27], [28], [29].
In that case, background models are assumed to be known
and 2D probability maps are fused into a 3D occupancy
grid. Again, 2D silhouettes are not directly estimated, but
obtained as a by-product of a 3D segmentation in the
occupancy grid, hence attaching the 2D silhouette segmen-
tation to an unnecessary 3D discretization.

Our primary motivation is to propose a method that
automatically identifies foreground regions in several images
without prior knowledge nor user interaction. Monocular
segmentation based on the color consistency of the back-
ground and foreground image regions, e.g., [11] and [12], is
not sufficient with arbitrary images where strong gradients
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Fig. 1. Approach outline: First, silhouettes are initialized with the
projection of the camera visibility domain, then background and
foreground models are iteratively updated and silhouettes are reesti-
mated at each iteration using both color and spatial consistency
constraints. Once the optimization is completed, a postprocessing step
is performed to refine the estimated silhouettes.



perturb the segmentation and require user interactions.
Spatial consistency among multiple views helps in that
respect by providing additional constraints for the segmenta-
tion. Instead of using an intermediate 3D grid to enforce such
constraints, as in [26], [28], we directly formulate spatial
consistency in the pixel domain and combine the resulting
constraints with color consistency constraints. In addition to
maintaining the segmentation as a 2D process, such a strategy
assumes color consistency within each view and not among
them, hence removing the need for color calibration when
multiple cameras are considered.

3 PROBABILISTIC MODEL

The framework we propose relies on the identification of
the relationships between the entities involved, namely,
pixel colors, foreground and background models, and
binary silhouette labels. These relationships can be modeled
in terms of probabilistic dependencies from which we can
infer silhouette probability maps, as well as foreground and
background models, given the pixel observations. To this
purpose, we borrow the formalism developed by Franco
and Boyer [28] for 3D occupancy grids. Similarly to this
work, we assume that the image observations are explained
by the knowledge of the background in 2D and by the 3D
foreground occlusions (see Figs. 2 and 3). However, instead
of explicitly modeling occupancy in 3D through a grid, we
define a shape prior that models the dependency between a
pixel’s occupancy in one image and pixel occupancies in all
other images. Though similar in principle, the latter strategy
is independent on any 3D discretization and allows us to
directly solve for the pixel occupancies. The following
sections detail the corresponding probabilistic modeling.

3.1 Variables and Their Dependencies

Let us denote by I a color image map, byS a binary silhouette
map, and by � what is known beforehand about the model,
e.g., imaging parameters. Knowledge of the foreground
occupancy and the background colors is denoted asF and B,
respectively. Note that F , B, and S are unknown variables,

while I is the only known variable in the problem. For each
pixel, S has a value 0 if the pixel belongs to the background
and 1 otherwise. We use the superscript i to represent a
specific view and the subscript x to indicate a pixel located at
x ¼ ðu; vÞ in an image. Thus, I ix represents the color value of
the pixel x in the ith image. The variables F , B, S, and I in
different views are depicted in Fig. 2.

As shown in the dependency graph in Fig. 3, we assume
that an image observationI ix is influenced by the background
color at the corresponding pixel location Bix and by whether
the background is occluded or not at that locationSix, which is
itself governed by the projection of the foreground regionFx.
We assumeF and B to be independent, which can be argued
since shadows cast by the foreground can change the
background appearance. However, and without loss of
generality, we assume that shadows have a negligible impact
on the background colors.

3.2 Joint Probability

Before we infer any probabilities from our Bayesian
network, we need to compute the joint probability of all
the variables. Using the dependency graph explicated in the
previous section, we can decompose the joint probability
PrðS;F ;B; I ; �Þ as

Pr S;F ;B; I ; �ð Þ ¼ Pr �ð ÞPr Bj�ð ÞPr Fj�ð Þ
Pr SjF ; �ð ÞPr IjB;S; �ð Þ;

ð1Þ

where

. Prð�Þ, PrðF j�Þ, and PrðBj�Þ are the prior probabil-
ities of the scene, the foreground, and the back-
ground, respectively. Here, no a priori constraints
are given on the background colors nor on the
foreground shape. Thus, we assume that they have
uniform distributions and, as such, do not play any
role in the inference.

. PrðSjF ; �Þ is the silhouette likelihood that deter-
mines how likely is a silhouette given the fore-
ground shape. Since F is unknown, as explained
below we approximate this term by a spatial
consistency term that determines how likely a
silhouette Si is given all silhouettes Sj 6¼i is.

. PrðIjB;S; �Þ is the image likelihood term that
models the relationship between the image observa-
tions, i.e., colors and the background information.

Pixel measures, color or silhouette occlusion, can be
assumed to be independent given their main causes,
namely, background colors and foreground shape. Thus,
the above distributions can be simplified to pixel term
products as follows:
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Fig. 2. The variables in different views.

Fig. 3. Dependency graph of the image I . B is the background color
model, S is the binary silhouette map, F is the foreground spatial model,
and � is the prior knowledge about the model.



Pr SjF ; �ð Þ ¼
Y
i;x

Pr SixjFx; �
� �

;

Pr IjB;S; �ð Þ ¼
Y
i;x

Pr I ixjBix;Six; �
� �

:

The above spatial consistency and image likelihood terms
are detailed in the following sections.

3.3 Spatial Consistency Term

Silhouettes are the image regions onto which the foreground
shape projects. The silhouette likelihood PrðSjF ; �Þ is then
the probability of a silhouette S knowing the foreground
shape F . Such a term reflects the fact that all silhouettes are
generated by the same shape F . Consequently, silhouettes
from different viewpoints are not statistically independent
unless the foreground shape is known. In fact, silhouettes
should be such that there exists a 3D region that projects
onto all. This is known as the silhouette consistency
constraint [30]. We exploit this property to constrain the
shape of a silhouette given other silhouettes of the same 3D
scene. The silhouette likelihood given the shape becomes,
therefore, a spatial consistency term as follows:

Pr SixjF ; �
� �

’ Pr SixjSj6¼i; �
� �

;

and, to evaluate the silhouette consistency between view-
points, we use the silhouette calibration ratio, introduced in
[30], as explained below.

A set of silhouettes defines a visual hull [31] which is the
maximal volume consistent with all silhouettes. The visual
hull is thus the intersection of the backprojection of
silhouettes into 3D, i.e., the viewing cones. In a perfect world
with exact silhouettes and calibration, a viewing ray from any
pixel inside any silhouette intersects both the observed object
and the visual hull, and therefore, all of the other viewing
cones [30]. The silhouette calibration ratio measures how true
this property is for any pixel. It is a purely geometric measure
that tells whether a pixel belongs to a silhouette according to
the other silhouettes from different viewpoints and given the
calibration. Fig. 4 illustrates this principle and shows that
silhouettes from viewpoints j 6¼ i give a strong shape prior
for the silhouette in image i.

As detailed in [30], the silhouette calibration ratio Cx at
pixel x is a discrete measure based on the intersections
between the viewing ray at x and the viewing cones from
other viewpoints. In its simplest form, it takes values in the
range ½0::N � 1�, where N is the number of views and Cm ¼
N � 1 denotes the highest consistency value. Assuming that
Cx follows a normal distribution Rx below the true value
Cm, we have

Rx ¼
1

c
e� Cm�Cxð Þ2=�2

; ð2Þ

where c is a normalization factor and � controls how Cx

influences the silhouette consistency term. In practice, �
reflects the confidence we have in silhouettes and should be
chosen in order to allow for some tolerance. In our
experiments, we typically use a value of 0.7 for �.

We have defined the silhouette consistency term. We can
now express the spatial consistency term at a given pixel
location x. The silhouette information at that pixel Six is a
binary value: 0 for background and 1 for foreground. In the

case where the pixel x is assumed to be background, i.e.,
Six ¼ 0, the silhouette information from other viewpoints
does not provide any additional cue whether this is true or
not. Hence, we assume the spatial consistency to follow a
uniform distribution Pb in that case. On the other hand,
when the pixel x is assumed to be foreground, i.e., Six ¼ 1,
Rx tells us whether this is consistent with other silhouettes.
Consequently, the spatial consistency term is as follows:

Pr SixjSj 6¼i; �
� �

¼ Pb; if Six ¼ 0; ð3aÞ
Rx; if Six ¼ 1: ð3bÞ

�

3.4 Image Likelihood Term

The image likelihood term PrðI ixjBi;Six; �Þ measures the
similarity between a pixel color I ix and the background
information, i.e., the background color model at that
location. In the same manner as for the spatial consistency
term, there are two different situations. If a pixel belongs to
the background, its color should follow the statistical color
model of the background. Conversely, when the pixel is
considered to be in the foreground region, the background
color model does not provide any information about its
color. As we make no assumptions regarding the color
distribution of the foreground, we assume that the image
likelihood term has a uniform distribution Pf in that case.
Hence, the image likelihood term is defined as

Pr I ixjBi;Six; �
� �

¼ HB I ix
� �

; if Six ¼ 0; ð4aÞ
Pf ; if Six ¼ 1; ð4bÞ

�

where HB denotes the statistical model of the background
colors. The value of Pf controls the threshold between
foreground and background assignments and ranges from 0
to 1. With large Pf , pixels should have high likelihood of
being classified as foreground, while pixels tend to be
identified as background more easily with smaller Pf . In
practice, we set Pf to values specific to the data sets. Note,
however, that in a more general approach, Pf can evolve
during the iterative process since HBs evolve by automatic
thresholding, as proposed in [32].
HB can be estimated using several methods, such as

histograms or Gaussian mixture models, and the overall
approach we propose in this paper could consider any of
them. In this work, we adopted a k-component Gaussian
mixture model (GMM). GMM has proven to be a powerful
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Fig. 4. The silhouette consistencies of pixels in image i: Brighter pixels
have higher consistencies. Top right: The true silhouette from
viewpoint i. Bottom right: Silhouette consistency measures of all pixels
in image i given all silhouettes Sj 6¼i.



tool when solving segmentation problems [11], [26] and
they are largely used for modeling color distributions.
Using GMM, the image likelihood term is computed as the
following sum of weighted probabilities:

HB I ix
� �

¼
X
k

wkN I ixjmk;�k

� �
; ð5Þ

where Nðxjmk;�kÞ is the normal distribution with mean
vector mk and covariance matrix �k. The value of k can vary
depending on the application, but a typical value used in
our work is k ¼ 5.

3.5 Inference of the Silhouettes

Once a joint probability distribution is defined, we can infer
the silhouettes from the given conditions by exploiting Bayes
rule. At pixel I ix, the probability of the silhouette is given by

Pr SixjSj6¼i;Bi; I ix; �
� �

¼
Pr Six;Sj 6¼i;Bi; I ix; �
� �

P
Six¼0;1 Pr Six;Sj6¼i;Bi; I ix; �

� �

¼
Pr SixjSj 6¼i; �
� �

Pr I ixjBi;Six; �
� �

P
Six¼0;1 Pr SixjSj6¼i; �

� �
Pr I ixjBi;Six; �
� � :

ð6Þ

The above expression allows the silhouette probability to
be determined by combining both color information given
by the background model and spatial constraints provided
by other silhouettes. Applying it to a silhouette in a given
image requires silhouettes in all other images to be known.
This naturally leads to an iterative scheme where silhou-
ettes are progressively improved by propagating silhouette
shape constraints among viewpoints and updating back-
ground models accordingly.

4 ITERATIVE SILHOUETTE ESTIMATION

Our approach is grounded on two assumptions which are
frequently satisfied. First, any foreground element has an
appearance different from the background in most images
so that color segmentation positively detects the element in
most images. Second, we assume that the region of interest,
i.e., the foreground, appears entirely in all of the images
considered. Hence, spatial consistency constraints hold
since all foreground regions correspond to a single 3D
space region. These two assumptions allow us to build
initial models for the background and foreground which are
then iteratively optimized in a two-step process: First,
silhouettes are estimated using foreground and background
models, i.e., spatial and color consistencies; second, these
models are updated with the new silhouettes.

4.1 Initialization

We do not assume any prior knowledge on the background
and foreground models. In order to initialize both models,
we use the fact that since the foreground scene is observed
by all cameras, it necessarily belongs to the 3D space region
that is visible from all cameras. Such a region is easily
obtained as the visual hull of all 2D image domains, i.e., the
2D regions that occupy full images. When projected onto
the image planes, this visibility volume defines initial
foreground silhouettes. This is illustrated in Fig. 5, where

the initial silhouette of I i is obtained by projecting the

visibility volume onto I i.
As shown in Fig. 5, the region outside the projected

volume belongs to the background. We thus use the pixels in

that region to initialize the background color model defined

in Section 3.4.

4.2 Iterative Optimization via Graph Cut

The initialization described previously provides initial

silhouettes as well as initial models for background regions.

We then iterate the following two steps:

1. Estimate each silhouette Si using (6) with the current
background models Bi and the other current silhou-
ettes Sj6¼i.

2. Update each Bi with pixels outside the current Si.
The second step above simply consists in rebuilding the

statistical background models with the additional pixels

newly labeled as background. For the first step, (6) provides

probabilities from which we need to decide for the pixel

labeling into foreground or background in each image.

Several approaches could be considered for that purpose,

from locally thresholding the probability at each pixel to

more global methods, such as graph-based approaches

which account for additional spatial coherence in the

image. We use a graph cut approach [11], [33] which finds

the pixel assignment Si that minimizes the following

energy in image i:1

EtðSijSj 6¼i;Bi; I iÞ
¼
X
x2I i

Ed SixjSj6¼i;Bi; I ix
� �

þ
X
ðx;yÞ2N i

Six 6¼S
i
y

�Es

�
I ix; I iy

�
;

ð7Þ

where

. Ed is the data term that measures how good a
pixel label Six ¼ 0; 1 is with respect to the image
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Fig. 5. Initialization: The initial silhouette of I i is obtained by projecting
the visibility volume onto I i. Note that the image region outside the
silhouette necessarily belongs to the background, while the initial
silhouette contains both background and foreground elements.

1. Note that a global minimization over all images cannot be considered
here since, to compute the spatial consistency term of the silhouette,
probabilities in a given image labels in all other images are required.



observation and for which we use the silhouette
probability in (6):

Ed SixjSj6¼i;Bix; I ix
� �

¼ Pr SixjSj6¼i;Bi; I ix; �
� �

:

. Es is the smoothness term that favors consistent
labeling in homogeneous region and N i denotes the
set of neighboring pixel pairs in image i based on
8-connectivity:

Es

�
I ix; I iy

�
¼ 1

1þDðI ix; I iyÞ
;

where DðÞ is the euclidean distance. Such energy

penalizes neighboring pixels with similar colors but

different labels. It can take different forms, as

proposed in [11], [33] with similar results according

to our experiments.

The graph cut approach finds new silhouette labels from

which new background models are inferred before the next

iteration. To terminate the iterative optimization, we observe

the number of pixels whose states changed from Unknown to

Background and stop the process when no further pixels are

newly identified as being in the background.

4.3 Silhouette Refinement

The iterative scheme described in the previous section
efficiently discriminates background and foreground pixels
when there are either color cues with respect to background
models or spatial cues with respect to other silhouettes. In
some cases in particular, with few viewpoints, ambiguities
remain because spatially consistent 3D regions project onto
regions for which color information is not sufficient to
correctly label. This is typically the case nearby foreground
object boundaries (see Fig. 6). Such ambiguities can be
resolved by either adding viewpoints, thus refining the
spatial consistency term, or by adding color information.
We consider the latter in practice since the number of
viewpoints is generally fixed. To this purpose, we make the
assumption that the iterative optimization provides reason-
able approximations of foreground regions, i.e., they
contain a majority of foreground pixels. Under this
assumption, we can build color models HF for foreground
regions to replace the uniform distribution Pf in the image
likelihood term which becomes

Pr I ixjBi;Six; �
� �

¼ HB I ix
� �

; if Six ¼ 0; ð8aÞ
HF I ix
� �

; if Six ¼ 1: ð8bÞ

�

To estimate HF , we use the GMM method presented in
Section 3.4 for HB, and then perform a graph cut step as
described previously. Fig. 6 illustrates that approach with a
synthetic example. Before refinement, in Fig. 6b, it can be
seen that the silhouettes have both over and underestimated
regions, meaning that during the iterative optimization,
some foreground regions were lost, while some background
regions were not removed. As shown in Fig. 6c, the
refinement with a nonuniform foreground color model
significantly improves the results.

5 EXPERIMENTAL RESULTS

In order to evaluate the proposed scheme, experiments
with both synthetic and real data sets were performed.
Standard real data sets, such as the Middlebury data set
[41], were considered to demonstrate the interest of the
approach in classical situations. In addition to real data sets,
a synthetic data set was used to illustrate the behavior of
the approach with challenging background and foreground
color ambiguities.

5.1 Implementation

Experiments were performed on a 2.4 GHz PC with 2 GB
RAM. The smoothing coefficient in the graph cut step was
set to � ¼ 1:2. The uniform probability of a background
pixel to be spatially consistent was set to Pb ¼ 0:4 and Pf
varies depending on data sets.2 These parameters were
experimentally determined in this work. The experiments
show that most of the processing time is devoted to the
spatial consistency. Computing the spatial consistency term
for a pixel requires projecting the viewing line of that pixel
in all available images [30]; thus, the complexity is linear in
the number of images for a pixel. Since all pixels in all
images are considered, the overall complexity is OðN2

i NpÞ,
where Ni is the number of images and Np is the number of
pixels per image, and computation time for spatial
consistency is typically several minutes for eight images
with 640� 480 pixels without any implementation optimi-
zation. This can be drastically reduced by considering
spatial consistency only at pixels which do not present high
background probabilities at the previous iteration. In
addition, it should be noted that the spatial consistency
computation could easily be parallelized since computa-
tions are performed per pixel independently.

5.2 Synthetic Data

We used the publicly available Kung-Fu Girl sequence [42].
The data set consists of 25 calibrated images of a synthetic
scene. For the experiments, six views were selected, as
shown in Fig. 7.

To illustrate the interest of the spatial consistency term for
silhouette extraction, experiments where spatial consistency
is enforced over different number of images from 1 to 6 were
conducted. In Fig. 8, the silhouettes (top row) and the
corresponding spatial consistencies (bottom row) are shown.

1434 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 7, JULY 2011

Fig. 6. Silhouette refinement. (a) Input images. (b) Silhouettes after the
iterative optimization. (c) Silhouettes after refinements.

2. In this work, we used the following values for Pf : Pf ¼ 0:65 for
Dancer, Temple, Toy-1, and Duck-1; Pf ¼ 0:7 for Toy-2, Duck-2, and Violet;
and Pf ¼ 0:75 for Kung-Fu Girl and Bust.



In all experiments, the background model was initialized
with pixels outside the visibility volume of the six views, as
described in Section 4.1. In the single-view case, the spatial
consistency is not defined; thus, all pixels are assumed to be
consistent, i.e., the left image in Fig. 8. In that case, only
background color consistency holds, hence giving poor
segmentation results since color information is not discri-
minant enough for this data set. As the number of views
increases, more background regions are progressively
identified. This shows that although background and fore-
ground colors are similar, the spatial consistency provides
useful cues that can disambiguate the segmentation.

Fig. 9 shows the segmentation results obtained using the
proposed method. Since the cameras have symmetric poses,
the initial silhouettes are almost identical, as illustrated in
the second row. The next rows 3-6 show the segmentation
results at different iterations. Note that even with a
challenging situation where foreground and background
colors present similarities, the foreground regions can still
be automatically identified with reasonable precision. In
addition, though parts of the foreground can be lost during
optimization, most are recoverable through the postproces-
sing step by exploiting the foreground color model, as
shown in row 7.

5.3 Real Data

In order to evaluate the approach in practical situations,
several multiview data sets were considered. These sets
were captured both under controlled lighting conditions
and under general lighting conditions. Note that color
calibration was not performed with the data sets used in
these experiments. In the following, we first explain how
camera calibration is conducted, and then show the results
of silhouette segmentation.

The images used for our experiment are calibrated as
follows: For simple data sets, we used a checkerboard
pattern, which is a well-known basic calibration method,
and many implementations are available [46], [47]. For data
sets of complex scenes, we follow the structure from motion
technique for camera motion estimation. First, we extract
SIFT [34] features from all images. We adopt GPU-based
implementation to improve the speed of feature extraction
[48]. Then, we find the two images with the highest feature
similarity among all input images. Using these two selected
images, a two-view reconstruction is carried out to obtain
an initial set of sparse 3D points followed by a bundle
adjustment. The camera pose is initialized using Nister’s

five-point algorithm [35]. After the two-view reconstruc-
tion, we incrementally add remaining images to the
reconstruction. This approach returns the camera poses
with a reasonable accuracy. In the pose estimation step,
we assume that the intrinsic parameters of the camera are
known and only the extrinsic parameters need to be
estimated. For intrinsic parameters, retrieving CCD sensor
information from the EXIF tags of images is one solution as
proposed in [36]. Note that some of the data sets used in our
experiments are already calibrated.

In Fig. 10, silhouette extraction results obtained with the
Dancer data sequence [43] are shown. They illustrate that
precise silhouettes can be extracted in real situations
without prior information on the background and with
the sole assumption that foreground objects appear in all
images. We show more experimental results in Fig. 11 with
data sets having simple and complex backgrounds.

The Temple data set [41] presents an almost uniformly
black background, therefore making the silhouette extrac-
tion easier than in other cases. Nevertheless, note that, as
illustrated in the Table 1, the temple belongs to the
foreground region but presents colors similar to the fore-
ground, making the object boundaries difficult to extract
precisely. The Toy-1 data set corresponds to a typical setting
for image-based modeling where the background has colors
different from the foreground. The Duck-1 sequence
illustrates a more complex situation with nonuniform
background and strong edges in the images. The Toy-2
and Duck-2 data sets present more complex backgrounds.
The Bust [44] and Violet [45] data sets also present complex
and natural scenes, although Violet contains both simple
and complex backgrounds, depending on the viewpoint. In
all data sets, the lighting conditions differ with respect to
the viewpoints. Hence, color consistency cannot be as-
sumed between viewpoints, while geometric consistency
still holds. As shown in Fig. 11, our approach extracted the
silhouettes of foreground object successfully from both
simple and complex scenes. Interestingly, in the Duck-1 data
set, the checkerboard pattern is identified as background.
This is explained by the fact that its colors belong to the
background model and also because it is not fully spatially
consistent since some parts do not project inside all images,
thus contradicting the two assumptions of our approach.
We can see a similar situation in the Bust data set results,
where only the statue is identified as foreground although
the wooden support is visible in all views. This is because
the legs of the support are clipped in some views, making
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Fig. 7. The six input images of the Kung-Fu Girl sequence.

Fig. 8. Segmentation results with different numbers of views (top row)
accounting for spatial consistencies (bottom row). From left to right, one,
two, four, and six views are used. Note that segmentation errors that
occur with six views are due to color similarities between background
and foreground regions. Such artifacts will generally be removed with a
postprocessing step, as explained in Section 4.3.



the support part spatially inconsistent. In the results with
the Violet data set, some details of small stems are lost, but
the overall object shape is well retrieved.

Fig. 12 presents experimental results with data sets
where multiple objects are observed. In Fig. 12a, only one
object is identified as foreground as a result of the spatial
consistency assumption that foreground objects appear in

all images. Due to our spatial consistency constraint, the
small ducks’ beaks are identified as foreground, although
their color belongs to the background model. In contrast, in
Fig. 12b, all objects are correctly extracted in the images,
showing that the algorithm correctly identifies the fore-
ground region seen by all images without supervision, i.e.,
without the need for specific information about its content.
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Fig. 9. Segmentation results with the Kung-Fu Girl sequence. Top row: Input color images. Row 2: Initial segmentation obtained by projecting the
camera visibility domain. Rows 3-6: Segmentation results at different iterations. Row 7: Final segmentations after postprocessing. Bottom row:
Spatial consistencies corresponding to the final segmentation.



5.3.1 Quantitative Evaluation

In the following, we present a set of numerical evaluations
that illustrates how the approach behaves with different
data sets, over iterations, and in the presence of noise.
Ground truth silhouettes were obtained manually with the
help of commercial software such as Photoshop or Gimp.

To compare the silhouettes obtained by our method and
the ground truth, we denote by Wb

a the label set a pixel
belongs to, where a is the labeling F or B obtained with our
method and b is the ground truth label. From these four sets
of pixels, we can compute the rates of pixels correctly and
incorrectly labeled foreground over foreground and back-
ground regions, respectively, as

Hit Rate ¼
N WF

F

� �
N WF

F

� �
þN WF

B

� � ;

False Alarm Rate ¼
N WB

F

� �
N WF

F

� �
þN WB

F

� � ;
ð9Þ

where Nð�Þ represents the number of pixels in a set. Such
rates are then averaged over the different images.

Table 1 shows the results. Interestingly, the results with
the synthetic data set are worse than with real data. This is
mainly due to the strong ambiguities between foreground
and background colors in the synthetic images. Our
approach keeps high accuracy of the resulting silhouettes
even with complex background, although simple scene
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Fig. 10. Segmentation results with the Dancer data set (eight views). Top row: Four selected images. Row 2: Initial silhouettes. Rows 3-6:
Segmentation results at different iterations. Row 7: Final segmentation after postprocessing.



cases show more accurate results. The Violet sequence, for
instance, shows less accuracy because of the small details
lost, as shown in Fig. 11. Also, note that the highest
standard deviation among the simple scene data sets, with
the Duck-1 sequence, results from the scale variations
between viewpoints.

The behavior over iterations is illustrated in Fig. 13 for
the different scenes. It shows that the false alarm rates
decrease dramatically between iterations 1 and 8, as large

areas of the background regions are removed at each

iteration through the combination of color and spatial

consistency constraints.
In the experiments, we manually chose Pf for each data

set. As explained in Section 3.4, pixels are more likely to be
classified as foreground with larger Pf , while smaller Pf
increases pixels’ likelihood to be identified as background.
Fig. 14 illustrates such behavior with various values for Pf .
Results show that the data sets having simple backgrounds
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Fig. 11. Silhouette extraction with single-object scenes. (a) Results with a simple scene: From top to bottom, Temple (10 views), Toy-1 (12 views),
and Duck-1 (five views). (b) Results with more complex scene: From top to bottom, Toy-2 (12 views), Duck-2 (eight views), Bust (six views), and
Violet (six views).



present a better tolerance to false foreground detection than
data sets having complex backgrounds. Another observa-
tion from Fig. 14 is that the false alarm rate is less than 100,
although Pf is close to 1. This means that not all pixels are
classified as foreground, even with large Pf , and
demonstrates that the spatial consistency constraint can
identify background regions although the foreground
likelihood is high.

To evaluate how the number of views affects to silhouette
segmentation results, we conducted silhouette extraction
with varying number of views, ranging from 1 to 6. We used
the Kung-Fu Girl sequence for experiment and the result is
shown in Fig. 15. As expected, more views result in better
silhouette estimation (also illustrated in Fig. 8). It can also be

seen that performances increase drastically with four views
or more. The reason for that is because the spatial
consistency becomes inaccurate with less than four views.

In order to measure the robustness of the proposed
silhouette extraction method with respect to noise in the
image pixel colors and the calibration parameters, multi-
view silhouette extraction was performed with varying
noise levels on the Kung-Fu Girl sequence. The averaged
false alarm rate is depicted in Fig. 16. Pixel color noises
were generated as random Gaussian noises, with zero
means and standard deviations �, which were added to all
color channels in all images. For camera parameters, i.e., the
focal length and translation parameters, the noise varies
from 0 to 5 percent of the exact parameter values, and for
rotation parameters, the noise varies from 0 to 2 degrees in
rotation angles with respect to the x, y, and z-axes. Each
point in the graphs corresponds to the mean value over
15 trials, obtained with a randomly chosen image frame
from the full sequence of the Kung-Fu Girl data set (i.e.,
200 frames). As shown in Fig. 16a, the proposed method is
robust to color noises with � � 3, but the performances
decrease drastically when � > 3. Such behavior is in part
due to the fact that noises modify colors in both background
and foreground regions and in such a situation, the
background and foreground color models are ambiguous
and result in inaccurate classification results. With incorrect
calibration parameters, the foreground regions inferred
from other views may provide inaccurate spatial consis-
tency cues. Hence, parts of the foreground regions are lost
in the extracted silhouettes. According to our experimental
results, the spatial consistency is more sensitive to errors in
the rotation parameters than errors in the translation or
focal length parameters. Also, these results show that the
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Fig. 13. Convergence of the extracted silhouettes: The average false
alarm rates at each iteration.

Fig. 14. Silhouette extraction with different Pf : Large and small values of
Pf increase the false detection rate because most pixels are identified
as either foreground or background in that case.

Fig. 12. Silhouette extraction with multiple object scenes. (a) Only one
object is spatially consistent. (b) All three objects are spatially
consistent. Both data sets consist of six views.

Fig. 15. Silhouette extraction for a different number of views.

TABLE 1
Silhouette Extraction Performance Measurements



approach is more sensitive to errors in colors than errors in
spatial camera poses.

5.4 Discussion

5.4.1 Failure Cases

Although it shows good performances in our experiments,
the proposed approach fails when the initial assumptions

are not satisfied.

1. Color models of the foreground and background are
indistinguishable due to similar color distributions
or large color noises. As shown in Fig. 16, color
noises can result in large errors.

2. Parts of the foreground object are clipped in some
views. In that case, the clipped parts of the object do
not satisfy spatial consistency, and thus they are
likely to be identified as background.

A potential solution to these problems is to use a local
color classifier for a better color consistency check and to
apply an adaptive weighting scheme for the color and

spatial consistencies as proposed in [37], for instance.

5.4.2 Limitations

The approach also presents some limitations. First, seg-
mentation is difficult in the vicinity of object boundaries
where colors are ambiguous. Such ambiguities occur during
the image acquisition and are caused by the reflections of
foreground colors onto background surfaces, and vice
versa. Since spatial consistency is not necessarily very
accurate in such regions, they can, therefore, be misclassi-
fied. This limitation can be overcome by exploiting other
postprocessing methods such as active contour [38] or by
allowing some user interactions [24]. A second limitation
comes from the fact that all images should be calibrated.
This limitation can be addressed by a robust structure from
motion algorithm that provides reconstruction of cameras
from a set of unorganized images [36]. Another possible
solution is exploiting a homographic framework for spatial
consistency inference as proposed in [39], [40]. On the other
hand, wrong calibration parameters penalize the spatial

consistency term which becomes unreliable. A possible

solution would be to simultaneously optimize calibration

parameters in the process of estimating silhouettes.

6 CONCLUSIONS

In this paper, we have presented a novel method for

extracting spatially consistent silhouettes of foreground

objects from several viewpoints. The method integrates both

spatial consistency and color consistency constraints in order

to identify silhouettes with unknown backgrounds. It does

not require a priori knowledge on the scene nor user

interaction and, as such, provides an efficient automatic

solution to silhouette segmentation. The only assumptions

made are that foreground objects are seen by all images and

they present color differences with the background regions.

Geometric constraints are enforced among viewpoints and

color constraints inside each viewpoint. Results demonstrate

the interest of the approach in practical configurations where

3D models are built using images from different viewpoints.
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